Closing Wed: HW_7B, 7C (8.1) Closing Next Wed: HW_9A, 9B, 9C Midterm 2 will be returned Tuesday.

Entry Task:

(An example of a differential equation) Find y = y(x) such that $\frac{dy}{dx} - 8x = x^2$ and y(0) = 5. **9.1 Intro to Differential Equations** A **differential equation** is an equation involving derivatives.

A **solution to a differential equation** is any function that satisfies the equation.

Example

1. Consider the differential equation:

$$\frac{dP}{dt} = 2P$$

(a) Is
$$P(t) = 8e^{2t}$$
 a solution?

(d) The general solution to $\frac{dP}{dt} = 2P$

is

$$P(t)=Ce^{2t},$$

for any constant C.

We will learn how to find this next time.

(b) Is $P(t) = t^3$ a solution?

(C) Is P(t) = 0 a solution?

2. Consider the 2nd order differential equation:

$$y'' + 2y' + y = 0.$$

(a) Is $y = e^{-2t}$ a solution?

(b) Is $y = t e^{-t}$ a solution?

(c) There is a sol'n that looks like y = e^{rt}.
 Can you find the value of r that works?

Application Notes:

 $\frac{dy}{dt}$ = "instantaneous rate of change of y with respect to t"

"A is proportional to B" means A = kB, where k is a constant. In other words, A/B = k.

An Example:

A common assumption for melting snow/ice is the rate at which the object is melting (rate of change of volume) is proportional to the exposed surface area.

Consider a melting snowball:

$$V = \frac{4}{3}\pi r^3$$
, $S = 4\pi r^2$

Write down the differential equation.

Four applied examples from homework: **1. Natural Unrestricted population** Assumption: "*The rate of growth of a population is proportional to the size of the population.*"

P(t) = the population at year t, $\frac{dP}{dt} = the rate of change of the$

population with respect to time (i.e. rate of growth).

So the assumption is equivalent to the differential equation

$$\frac{dP}{dt} = kP,$$

for some constant *k* (we call *k* the <u>relative</u> growth rate)

2. Newton's Law of Cooling

Assumption: "The rate of cooling is proportional to the temperature difference between the object and its surroundings."

 $T_{s} = \text{constant temp. of the surroundings}$ T(t) = the temp. of the object at time t, $\frac{dT}{dt} = \text{the rate of change of the temp}$ with respect to time
(*i.e.* rate of cooling).

 $T - T_s$ = temp. difference between object and surroundings.

So Newton's Law of Cooling is equivalent to the differential equation

$$\frac{dT}{dt} = k(T - T_s),$$

for some constant k (cooling constant).

3. All motion problems!

Consider an object of mass *m* kg moving up and down on a straight line.

```
Let y(t) = \hat{t} height at time t'

\frac{dy}{dt} = \hat{t} velocity at time t'

\frac{d^2y}{dt^2} = \hat{t} acceleration at time t'
```

Newton's 2nd Law says: (mass)(acceleration) = Force $m \frac{d^2 y}{dt^2}$ = sum of forces on the object

Only taking into account gravity:

$$m\frac{d^2y}{dt^2} = -mg$$

Consider gravity and air resistance (the force due to air resistance is proportional to velocity):

$$m\frac{d^2y}{dt^2} = -mg - k\frac{dy}{dt}$$

4. A Mixing Problem

Assume a 50 gallon vat is initially full of pure water. A salt water mixture is being dumped **into** the vat at 2 gal/min and this mixture contains 3 g/gal. The vat is mixed together.

At the same time, the mixture is coming **out** of the vat at 2 gal/min.

Let y(t) = grams of salt in vat at time t. $\frac{y(t)}{50} = \text{salt per gallon in vat at time, } t.$ $\frac{dy}{dt} = \text{ the rate (g/min) at which salt is changing with respect to time.}$

RATE IN = (3 g/gal)(2 gal/min) = 6 g/min RATE OUT = $(\frac{y}{50}$ g/gal)(2gal/min) = $\frac{y}{25}$ g/min

Thus,

$$\frac{dy}{dt} = 6 - \frac{y}{25}$$